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STATISTICAL TOOLS FOR DETERMINING FITNESS TO FLY

AN OVERVIEW

Military personnel and other groups are routinely subject to regularly

scheduled physical examinations or checkups. Beyond providing the personal

benefits of continual health care, the checkups also serve to identify high

risk cases. if the subject is a flyer or is responsible for dangerous equip-

ment, a high probability of an incapacitating event may require a change of

assignment to a less hazardous one. The goal of tPis project is to use data

from regularly scheduled checkups to estimate the probability of an event such

as a heart attack.

The task considered here is to construct a mathematical model to estimate

the probability of an event. This model would allow the examining physician

to summarize the subject's medical history in a meaningful way. A high proba-

bility of an event as computed by the model would be evidence of a high risk

case. A number of models have been created for estimating the probability

distribution of time to event, the so-called failure time. The most notice-

able contribution in the biostatistical literature has been Cox's (3) propor-

tional hazard model for possibly censored data using concomitant information.

it has been applied to cancer data with a good deal of success, and a number

of extensions of the model have appeared in the literature; cf. Breslow (2),

Cox (3), Peduzzi et al. (Q), Taulbee (12), Prentice and Kalbfleisch (9). How-

ever, there are qualitative differencps between the populations of diagnosed

cancer patients and of generally healthy military personnel. In the former,

eventual failure occurs in a large proportion of the cases; in the latter, the

event is relatively rare. Also, the chance of loss to followup is fairly

large among the civilian population, while loss to followup is less of a

problem among military personnel, especially rated career officers. Finally,

3
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the data needed to predict survival among cancer patients is usually first

collected at the time of initial diagnosis. The data to predict events among

healthy subjects is limited to that routinely gathered during the periodic

checkups. These differences lead us to propose a separate model which we have

termed the periodic checkup predictive model. The model is a survival dis-

tribution model similar both to Cox's proportional hazard model when there is

little or no loss to followup, and to logistic discrimination (Press and

Wilson (10)) when the object is to predict the occurrence or nonoccurrence of

an event during a fixed interval.

The chief motivation behind the model is to mimic the decision process of

the examining physician at the end of a regularly scheduled checkup. The

physician must decide on the strength of the cur.•ent examination findings plus

the subject's previous medical history whether there is sufficient risk of an

event to require further tests. The horizon of the event period of primary

interest is the time of the next regularly scheduled checkup. At that time,

new data will be available that may change the estimate of risk.

In a similar manner, the model used here estimates the survival function

of an individual from the moment of his last checkup until the time of his

next exam. At the time of the next scheduled checkup a new assessment will be

made. We indicate the time that the patien is at risk by T; thus T4O at

the time of the most recent checkup and ti~ at the time of the next sched-

uled checkup. All covariates including past time-dependent ones can be con-

sidered to be fixed at x=O and to remain so until I-1. Since an event must

occur in the interval between two successive checkups, 0 < -I ( 1 for all

subjects suffering an event. The survivors, those who have never suffered an

event, have TI=l for each time they survive over the period between check-

ups without an event, at which time new data becomes available and Ti=O

4'
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again. Ideally the data is collected and analyzed each period so that changes

in the populition are built into the model. In practice, a number of years

may be clustered together so that there are a reasonable number of events.

Then survivors appear repeatedly with expanded data sets at each new checkup.

This leads to the problem of dependent sample members, but our research indi-

cites that thLe problem may be solved by subsampling without replacement.

The chief advantage of the periodic checkup predictive model lies in the

short horizon for the failure time. Loss to followups becomes less of a prob-

lem since it i1 necessary only to establish that the subject survived until

the time of his next scheduled checkup. Reestimating the parameters each

period allows changes in the population to be quickly built into the model.

The model will more closely fit the observations since it need only predict

over a short period using recent data. Finally the model is found to be com-

putationally easy to implement.

THE PERIODIC CHECKUP PREDICTIVE MODEL

The model implemented here is based on the following assumptions:

(i) each individual is examined annually or, more generally, at the end of

some fixed interval;

(ii) each examination consists of identical tests and readings;

(iii) records of at least two previous examinations are available at the

time of the most recent examination for each individual;

(iv) the occurrence of an event (heart attack, say) before the next scheduled

examination is relatively rare;

(v) once the measured covariates such as age, blood pressure, body mass, and

certain fixed covariates are accounted for, all individuals are equally

at risk until the next scheduled examination.
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These assumptions are implemented by a proportional hazard model with

constant base risk. Let t denote the age of the subject at the time of his

last examination, and - the future time where T=O at the time of the last

examination. Let z(t) be the time-dependent covariates for the last and two

previous examinations, and x the time-independent covariates. Let y e Rm,

m>1 denote appropriate transformations of z(t) and x that have been found

to be informative about the chance of an event. The hazard rate X(T,z(t),x)

is assumed to have the form

X(1Ez(t),x) 0 T•^ for 0 < < 1 (1)

R Ty
and P[T=1] exp{-x 0 e- , where T indicates vector transpose and the

parameter vector a c Rm. This model is a version of one due to Taulbee

(12) and as such is a generalization of Cox's model for two cancer popula-

tions' survival functions. It holds that the base population risk XO is

constanL over the one period time interval until the next examination. At

that time, the estimate for X0 is updated to account for any change in the

population's prior risk of an event. For example, in recent years, it appears

that fewer heart attacks are oLcurring among middle-aged mcn, suggesting that

x0  should be successively lowered. The model is also a generalization of the

Weibull base hazard rate model. To see this, note that the Weibull model

hazard has the form

X(t,Z(t),X) =XaCL(Xot) - e-1- + -2.

=(Xtct)exp[(a-1)log + YiZ + Jx] X e T (2)
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where y transforms age variable t to the variable log t. The difference

between equations 1 and 2 is that equation I gives the hazard in terms of

future time -, taking age at last checkup and the recorded covariates to be

fixed until the next examination. On the other hand, equation 2 expresses the

hazard for age t, and hence does not use age as a covariate. The advantage

of equation 1 over equation 2 is that equation 1 requires fitting the data

only over the interval until the next scheduled checkup while equation 2

requires a data fit essentially from birth until the age of an event or

censoring. A second technical advantage is that in equation I we may estimate

parameters by the method of maximum likelihood while it can be shown that no

maximum likelihood estimates exist for the parameters of equation 2, and other

less developed techniques must be utilized.

To find the uIlaximum likelihood estimates (MLE) for xui from equation

1, we note that

(Tz(t),X)= X(T,y), say

= f(T,y)/(1-F(•,y)).

This implies that the survival function is

S(T,y) = exp{-ý 0 e-TYX}.

For a samplC: !.f size n, suppose that r individuals, indexed by

i.....r, have failed (suffered an event) prior to the time of their next

scheduled checkup while n-r, indexed by r+l,...,n, have survived through the

time interval. Scale T to equal U at the time of last checkup, and to 1

at the time of next scheduled checkup. Thus the failure times are 0 < j< 1

/



for j=l,...,n, with -cj=l for j=r+l,..,n. The likelihood function for

the sample is

r n a
L = Xrexpi r BTyj - Trie-T-yi}.

j=1=

Hence the log likelihood

r n
x r log Xo + ý BTYj - Xo ý - 1 -.

j=1- i=l

Taking the partial derivative of Z with respect to X0 , and setting it equal

to 0, we find the MLE for Xo to be

S n •ieTi
X0 = r/ ý Ti.Y (3)-

Substituting X into x we have the log likelihood
^n ý y r

r log r - r - r log Tie- -1 + r -ryi (4)
i=1j=

To find the MLE of a from 2, we take the gradient of t, 3i/30=h(3), say.

We find a convenient matrix form for h(a): let Y be the nxk matrix of sample

points for k transformed covariates observed for n subjects. Let P be

the n-dimensional coiumn vector with elements

OT "•T eByi/ n -ri°oTyi- - (5
rii

Let A be the n-dimensional column vector of failure indicators

6i = 1 if subject i failed.
Ii 0 if subject i survived.
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Then

Y(fl = yT (A-rP). 
(6)

We find the zeros for this set of k simultaneous equations by the Newton-

Raphson technique. Let D be the nxn diagonal matrix with diagonal ele-

ments Pi Then the nxk matrix

ýPIaLj ý (D-ppT)y.•

Hence

dh(B)/D .= -rYT(D-PPT)Y. (7)

The Newton-Raphson method iteratively solves for 6 by updating values

6 to !1,+, where

+ [yT(D-ppT)y]-1YT(t/r-P). (8)

There is a heuristic interpretation for some of these equations. In

equation 3, xo is the ratio of the average number of failures, r/n, to the

n

average value of the covariate effect iexp T y, namely, i tie-T -i/n, for
- - i=1

the given sample of size n. Thus Xo plays the combined role of providing

an estimate for the population failure rate between examinations plus a cen-

tering estimate that leaves the Yi invariant under uniform change of lo-.

cation. This role is analogous to that of the constant term in discriminant

analysis which incorporates both prior probabilities and an overall mean.

Setting h(b) equal to 0 in 6 and dividing by r shows that the MLE o

occurs when

Yr = yTp = E2y, say,

9



n
since each pi > 0 and pi p 1. That is, the maximum likelihood occurs

i=1

when the expected value for the covariates computed by using the B in equa-

tion 5 equals the sample average for the failure group. If the Yi display

a general shift between the failure and the survival groups, then the B will

tend to reflect this shift, to give, in general, positive values for 3Tyi

in the failure group and negative values in the survival group. This shift

will be magnified in cases where -i is smIall, and hence subjects who have

events soon after their checkup will be weighted more heavily in determin-

ing 8. Equation 8 will be recognized as weighted least-squared regression to

compute the increment in B at each iteration.

There is also a close resemblance between Cox's (3) proportional hazard

model for life tables from censored data and the model introduced here. Equa-

tion 4 shows that the log likelihood of our model, up to a constant term in

r, is

{ITyj - log[ n Tie (9)

In our notation, the log likelihood of the Cox model (3) becomes

Y) {f'yj - log[ eTyi']l (10)
j="1 i'R(Ej)

where R(-cj) is the index set of survivors at failure time Tj. Let us

assume that U < < TI _ _2 <...< Tr I 1 and recall that Ti=l, i=r+1,.o.,n.

Also in the application to Air Force flyers it is reasonable to assume that no

censoring occurs, since very few of the subjects, if any, will be lost to fol-

lowup over the course of the period between checkups. Then {r+l,..,n} will

10
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be contained in R(r1) for each j, 1-1,...,r. Let r(cj)=R(•.j)-{r+l nJ

Sthe index set of failing subjects who survive past -rj; if there are no

ties among the failure times,

r(Tj) = {i=l,....r}.

The difference hetween e)Ppressions 9 and 10 is then

tioq[ I e-~ e+ -~ il - log[~ rje- -3 + e-' i
kc r(-rji i=r+l j=1 ir+l

We see that the key distinction between the two models in the application to

periodic checkups of Air Force flyers is that the Coxc model uses only the in-

formation that flyer j 2 survived flyer j1 if TO(J) < t(12), 1 _<_ j < j 2 < r

while the periodic checkup model uses the actual time after checkup to weight

the 0T. In practice we suspect that the two models will lead to similar

estimates of the {. Also because the number of failures per year, r, is

small relative to the sample size, n, arid because loss to followup is negli-

qible, the Kaplan-Meier (r) estimates of xo(i), the hase hazard rate, will

be nearly constant in our application. For these reasons, plus the mathemati-

cal tractability of the full likelihood technique, we have opted for the model

proposed here over the Cox model,

IMPLEMENTATION OF THE MODEL

Five parts to the- implementation of the periodic checkup model were

"addressed before creating the actual proqram: (i) the use of a subsample from

the survivinq popuiation, (ii) transformations and selecting reexpressions of

the data, (iii) calculation of the initial estimate, (iv) estimation of the

11



parameters by the Newton-Raphson procedure, and (v) verification )f the

procedure by reusing the subsample. These will be considered in turn.

Use of a Subsample

Because of the rarity of the event, perhaps of the order of two heart

attacks per year for edch 1000 at risk, it will be necessary to use ,• larqe

sample size over a number of years to find ,. useful number of cases. The

mixture of years makes the procedure less sensitive to changes in the popula-

tion, such as the pos- ible decrease in heart attacks in recent years, How-

ever, without a large program to collect data each year, it will have to be

assumed that there is little or no change in the population at risk over a

period sufficiently long to gather a reasonably large number of events.

Let us consider the example of the dato set gathered by considering

approximately 3000 flyers at risk over the period 174-1978. To assume that

there were at least two checkups previous to the checkups that began the risk

period, the risk period was taken to be the two years 1976-1978. During this

period, eight of the 3000 were admitted to hospitals with the primary diagno-

sis of acute myocardial infarction, an average of 1.33 per 1000 per year.

Suppose that the 1976 and 1977 risk years are ooth used. The presence of a

1978 checkup merely indicates that the subject was not lost to toilowup duI,-i,,

the 2-year risk period 1976-1978. Then the total number of risk cases, using

both years, is roughly 6000. That is, in the direct model, 6000 cases need to

be analyzed to find eight events. The proposed alternative was to sample

systematically 20% of the 3000 from each of two strata based on age and to use

the second-to-last checkup plus the two previous to that one, usually 1975 to

1977, only. When the small number of incomplete cases were eliminated, 553

subjects remained. However, all eight event cases would be used. To check

12



the precision of the estimates, we compare the ratio of the two standard devi-

ations of the estimates from the samples. We find

o[(1/8) + (1/561)]1/2 .3561= = 1.0065.

o[(1/8) + (1/6000)]1/2 .3538

We conclude that only negligible gains in precision are possible using all

6000 risk cases. To check the bias of the subsample method, we assume that

each member of the stratified sample represents ten "identical clooes" in the

full sample. This asrumption appears to be reasonable for, this large sub-

sample suggestinS that a relatively small nine-member neighborhood can be con-

structed in the full sample for most of the subsampled cases. It is similar

[' o the assumptions in stratified sampling. Then the maximum likelihood esti-

mate, 0, for f from the subsample of size n satisfies

r n ^ n

r 1 = )j Yie Tyi/ > e.Tyi

j=1 i=li" i-I

• 'r T nI ; T ) n ^ T v

yieL'Tyi + > yie-y)/ • e-v. (11)
iHl i=r+1 r=1

The maximum likelihood estimate from the "cloned group" satisfies

r r +eT r n
-' Y Y j = ( )i Y--' + 10 X y iet yi)/( ý e + 10 ý eTyi)

j i=- i=r+l i=1 i=r±l

r 1TY0i 1 Ti r n

y0- i Yi yiedTyi)/(lO1 e e i + X ý - ). (12)
i~l- i=rmV i l i=r+l

13
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This suggests that if n is sufficiently large relative to r that the

effect of the r first terms in the numerator and denominator of the right

hand of equation 1 is small and the two maximum likelihood estimators of

will be very similar. Here 8 over 553 is roughly 1 in 70, and the 8 failing

cases do not display data dramatically different from the 353 control cases.

We conclude that the B estimates from the subsample are both reasonably

accurate and precise enough to justify the use of the subsample approach.

The parameter estimate that will display bias (though not lack of preci-

sion) will he xO, the MLE for the base hazard rate constant A0. Here

Ao= r/ e Tyi

is composed of the average rate of events in the subsample r/n and the con-
Sy-

stant term for the covariate coefficients e But the average rate for

thr9 population is not 8/561 hut rather 8/6000. This is eisily corrected by

substituting .75, the average hazard rate for the subsamnle, for r in X0 .

This may be verified by noting that

P[T>1 y] r e-eTy

is typically .995 or larger. Then we have the approximation

n n T
P[Ti f l Yi] = ): [1-exp{-ý 0e-ki]^

n , i =Vi
= Xoe.vi L re--'/ e, e r.

Thus the expected number of failures in the subsample roughly equals the

numerator of Ao; that is, r should equal .75. This correcting factor for Ao

14
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is necessary when the event in question is so rare that a stratified subsam-

pling technique is mandated, but inference of survival probabilities involves

the entire risk set.

Transformations of the Data

One of the chief advantages of the periodic checkup model with its con-

stant update of the survival probability is that the time-dependent data can

be considered to be fixed at time T=O. Followinq Frank (5) we feel that

three checkups provide sufficient information about the subject's state to

limit our consideration only to those three most recent examinations. Three

orthoqonal time-series transformations of the data check for constant, linear,

and quadratic trends in the data: (I 1 1), (-1 0 1), and (1 -2 1). We con-

iI. sidered these as representatives of general classes of time-dependent trans-

formations. The first class or block of constant transformations presently

built into the program has the coefficient vectors: (1 1 1), (0 0 1), (0 1 0),

(1 0 0), and (1 2 4). The second or linear block is composed of (0 -1 1),

(-1 0 1), (-1 1 0), and (-1 -1 2). The final block has the single quadratic

coefficient vector (1 -? 1). Each coefficient vector (a, a 2 a 3 ) is used to

find the corresponding trend in the data for each scalar variable. Let x0 ,

X-1, x- 2  represent the value of the covariate at the last and most recent

checkup, at the previous one, and at the second to last examination. Then we

compute the inner product ax 2 + a2 x. 1 + a 3 x 0 to get a transformed scalar

variable y. This transformation yi is computed for all failing subjects,

i-l.... ,r, and surviving subjects, i=ri-1,... ,n. The value of y as a dis-

criminator is determined by computing a t statistic for each transforniati in

y for the two samples of failures and survivors. The variance estimate is

derived fron the covariance matrix for each variable over the three

15
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examinations from the surviving group since it is possible that the failing

grouD may not have identically distributed cises, cf. Shea (11). Since r is

small relative to n, the effect is minimal in any case. Then

I.I t = (7r - -Yn-r)[(Z/r + I/n-r)(aTSa)]"I/2

where aT = (a,, a2 , a3 ); Yr and Tn-r are sample averages for transformed

variable y, and S is the autocovariance matrix for the variable under consid-

eration from the surviving sample. Since the statistic has n-r=553 degrees

of freedom for the denominator, and r=8, it may be safely assumed that t is

close to having the standard normal distribution. Therefore any t value

greater than one suggests that the chance is less than one-third that the two

populations have identical mean values for this transformation.

To select from among the thirty t values computed, we imposed some

prior constraints. First it was decided that age and at least one transforma-

tion of each variable would be included. This reflects the belief that age

and each variable observed are recorded because experience has related each of

these to the chance of an event. The transformations with highest t values

I are employed subject to these constraints until from six to nine such trans-

K formations have been selected. In the sample run, the maximum number of time-

K dependent data transformations was set to six.

The variables are modeled to be log-linear in the hazard rate and log-

loglinear in the survival function. It is natural to ask if a reexpression of

the data would serve to separate the two samples better. Two reexpressions

were tried by taking the naturdl log and the inverse of each raw data value.

These were motivated by the fact that most variables considered were ratios

such as mm Hg/cm2 or kg/cm2 , and also these reexpressions have traditionally

been considered "ery fruitful In other applications; cf. Box et al. (1). No

16
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distinctly better separations of the data were found under either reexpression

except for a slight improvement from using the logarithm of the body mass

index (BMI). The improvement was not deemed sufficiently large to justify the

loss of flexibility in the program introduced by taking the logarithm of one

variable while the others were unchanged. Therefore no reexpression of data

is built into the program, but an investigator may, if he chooses, rtexpress

data before entering it.

The option to include new variables (e.g., smoking and family history)

which are known risk factors is included in the prooram. These variables

specified by the user together with the temporal contrasts selected by the

above t-values would then he used to construct estimates of X0,, and S(t).

1' Calculation of the Initial Estimate

Formally, the iterat ve procedure for estimating the { is similar to

that for estimatin(l logistic discriminant function coefficients; cf. Press and

Wilson ('10). For this reason, the linear discriminant coefficients,

0o = -(yr - Xn-r),

where Xr and Xn-r are the average covariate vectors for those who failed and

did nut fail and S is the pooled covariance matrix of the covariate vectors,

were used as the initial values for the iterative solution of the maximum

likelihood equations. The sample run verified that eo was a good initial

value. Since 60 is basically independent of the sample size, this close ap-

proximation between io and p. verified that the effect of using a suhsample

rather than the full sample is probably negligible.
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The Newton-Raphson Procedure

The Newton-Raphson procedure for finding the MLE is based on the dsbump-

tion that the zeros of the first derivative provide the global maximum of the

likelihood. Since the log likelihood is differentiable everywhere on the

domain of •, since there is a unique critical point, and since the Jacobian

of the derivative, the matrix of second-order derivatives, is the negative of

a positive definite matrix, the Newton-Raphson procedure indeed leads to the

unique MLE. Moreover, the inverse of the matrix of second-order derivatives

evaluated at (3, denuted by GINV in the final iteration of the program, is

the Fisher information matrix.

Verification by Sample Reuse

The program has been written to apply the B and X0  (corrected) MLE to

the subsarilple cases. This allows the investigator to decide on the apparent

error of a procedure that predicts an event if the probability P[T1'<Iz(t)]

is greater than p., say, and predicts no event otherwise. However, sample

reuse leads to a favorable hias on the error of the procedure; cf. Lachenbruch

(7). A better idea of the error can be computed from the bootstrap methods

summarized by Efron (4). However, in initial trials such as this, the

apparent error provides some idea of the usefulness of the procedure. The

sample run here provides the following estimates of false positives (survivors

who would have bcen predicted to fail during the interval between their last

recorded checkups, usually the year 1977-1978) and false negatives (acute

myocardial infarction patients who would not have been considered at risk) for

various values of p.
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Po False + (% of 553) False - (% of 8)

.0012 39.2 0.0

.0014 33.3 12.5

.0016 25.9 25.0

.0018 21.5 37.5

.0020 17.2 50.0

.0025 10.1 62.5

.0030 6.9 87.5

.0035 4.0 100.0

This sample reuse estimate suggests that if po=.O016 is used, only

one-fourth of the survivors and one-fourth of the event cases would be mis-

classified, However, even if this optimistic estimate is true, hundreds of

fals;e positives would appear among the 3000 subjects at risk each year. We

conclude that the information provided by the data presently available,

namely, systolic and diastolic blood pressures, age, and body mass index, is

still insufficient to allow the computed probability to be anything more than

a convenient summary stdtistic to the examining physician. As more signifi-

cant variables are added to the covariate history (e.g., smoking behavior,

family history of coronary heart disease, trigliceride and lipid readings,

etc.) one would expect to see improved discrimination results for the proce-

dure.

PROGRAM DESCRIPTION

Data Files

Ihree input data files are needed to run the program: INPUT, DATAS,

arid DArAF.
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1. 'INPUT' file: contains some constants needed to run the program.

(a) Number of Cards in file: 13

(b) Layout of Card 1:

iIi
Field Length a•e. Variable

1 8 Real EFAIL: Average # of failures for
size of control group

11 2 Integer CYFAR: Year of last exam

13 4 Integer NVAR: # of time-dependent vari-
ables to select

17 4 Integer NAV: # of time-independent vari-
ables to select

21 8 Real XINC: Increment of frequency
table

i (c) NVAR miust be between 15 & 9, and NAV must be betwppn 0 & 3.

Also the sum must be less than or equal to 9.

(d) Layout of Cards 2 - 11:

Field Length jype Variable

1 4 Real A(I,1) Weight of 1st year"

5 4 Real A(I,2) Weight of 2nd year

9 4 Real A(I,3) Weight of 3rd year (year
prior to last exam)

LI. I

(e) Layout of Card 12:

Field Length Tpe- Variable

1 4 Integer BB(1). boundary of 1st block

5 4 Integer B13(2): boundary of 2nd block

9 4 Integer BB(3). boundary of 3rd block

20
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(f) Layout of Card 13;

Field Length Type Variable

1 4 Char. Name(I): name of 1st time-
dependent variable

5 4 Char. Naine(2): name of 2nd time-
dependent variable

9 4 Char. Name(3): name of 3rd time-
dependent variable

13 4 Char. Name(4): Always AGE

(9) A copy of sample data is included.

2. 'DATAS' file: contains records of control group.

(a) Number of records of this file does not have to be known so long

as the limit is not exceeded.

(b) Number of cards per record: 2

(c) Layout of Card 1:

Field Length Lai Variable

1 9 Integer ID or blank (not used in program)

10 2 Integer Year of birth

12 2 Integer Month of birth (not used in
program)

14 2 Integer Day of birth (not used in program)

16 2 Integer No. of month survived after last
exam.

18 2 Integer Year of last exam prior to disease

20 4 Integer Time-independent variable I

24 4 Integer Time-independent variable 2

28 4 Integer, Time-independent variable 3

21
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(d) FieIds 16-19 of Card 1 are blank in this file.

(e) There is no time-independent variables in DATAS/DATAF at present

time.

(f) Sample size: 553

(g) Total number of records in DATAS & DATAF may not exceed 570;

otherwise, the dimensions in the program must be increased.

(h) Layout of Card 2:

Field Length Type Variable

1 8 Real Time-dependent variable I of Year 1

9 8 Real Time-dependent variable 2 of Year 1

17 8 Real Time-dependent variable 3 of Year I

25 8 Real Time-dependent variable 1 of Year 2

33 8 Real Time-dependent variable 2 of Year 2

41 8 Real Time-dependent variable 3 of Year 2

49 8 Real Time-dependent variable 1 of Year 3

47 8 Real Time-dependent variable 2 of Year 3

65 8 Real Time-dependent variable 3 of Year 3

3. 'DATAF' file: contains records of disease group.

(a) See DATAS for detail, except columns 16-19.

(b) Sample size for this data: 8

Library Routines

We use nne IMSL routine LINVIF in the program, which finds the inverse of

a matrix. Several Fortran functions are used. In particular, MNFLIB is

loaded together with IMSLIB.
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Sample Job Setup

The example runs are done on CDC Cyber 170 machine under UT2D operating

system. The necessary conmiands are:

SREAI)PF, (Tape Name), MAIN, INPUT, DATAS, DATAF.

RFL,7710O.

MNF,I=MAIN.

LOAD,LGO,MNFLIB,IMSLIB

which assurnes the files are sorted at some permanent file storage. The result

will be a file OUTPUT.

Extensions

1, The example run does not contain any time-independent variables.

These data way be inserted in Card I of each record in DATAS/DATAF and set NAV

(number oi ddditiOfldl variables) accordingly.

2. The limit of NVAR + NAV < 9 may be increased to 12 so that we can

test more variables. To do so, we need to redimension the following arrays:

-Y in Main

Y,XT in Select

- X,S,13eta,Fletas,Mean,XTX,Tli,(,GINV,T5 in LSQ

Also Maxvar has to be set to 12 in the main program.

3. The limit of no more than 70 records may be increased to any

reasonable number. Maxcas in main has to be set to reflect the change. The

following arrays have to be redimensioned:

- X,Y,Tau,EventADDV in Main

X,Tau,Y,Event,ADDV in Select

- X,P1,P,lI,Tau,XOLD,SP,Event in LSQ

23
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4. The weights for variable selection may be changed by changing the

corresponding data cards in INPUT file. However, the second one cannot be

changed because it is used to compute the T-value of Age of last year.

5. Current block boundaries are 5,9,10,i.e.,

Block 1: 1-5

Block 2: 6-9

Block 3: 10

This may be changed by changing the data on the 12th Card.

6. Names for time-dependent variables may be changed by using a differ-

ent data card at the end of INPUT file (no more than 4 characters per name).

24
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General Structure of Algorithm

START

+
Input Data

+

Select Time-
Dependent Variables

4-

Merge Time-Independent
Variables If Any

+

Compute Initial Estimation
of Beta

II +

Find Estimation of Beta
by Newton-Raphson Method

Compute Survival Probability
and Frequency Tables

4-4

END
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QSTART

Input EFAIL,CYEAR,NVAR,NAV,XINC

BB~i i=1,3
name (1) i=1,4

Call SELEC FC 2.0

LNCASE=N1 + NZ
N=1

F /11**ýT K=NVAR +N
N<NAV ____ 

~ 1

4-+

INVRI=VAR NAVY(I ,K)=ADDY(1,N)I

T

Call LSQ FC 3.0 - I<NCASE

STOP

Flow Chart I.1-. Min Program]
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LSTART

Ni 0F n

Ni Event=Nl + 1
(N1)=O

rX(N ,i ,4)=Cy~ear-

Comipute Mean 1,

cXiian & c]vri ance of control
group

Me~an 1 S2

Flow Chart 2.0 [Subroutine SELFCT]
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Input Yob, Month / End-oF-File i
: Yoe, X(N2+Iij)/ ;

i=1,3; j=l,3 / i
I . i
• -- ÷•

i

i N2 Event : N2 + I 1 i
(n2)•Z I I

•(N2)-.04 + month . .081 I
X(N2,1,4)=Yoe-Yob-3+i I !

; Compute Mean 2 i

i N2 = N2 - N1
, II

g

S/ Output /

SMean 2, NI, N2
i

SJ

i,

i"
l

F]ow Chart 2,1 [Subroutine SELECT]
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-- IA2 - I
Tpe = I

T -__< IA_*__>2_F

Type Type+ 1Compute T-value for
IA-th Weight&
Type-th Type

<Type 
S4

Type =4 -

F

Type = 1 TABLE 1
IA =IA4± 1 IAge T ~Tjj (IA,Type)= Ij

"'IA < 10

OY

Flow Chart 2.2 [Subroutine SELECT]
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r0

Construct Table 2 by
selecting max. value
ot each block for
each variable

Output
Table 2

Construct Table 3 by se-
lecting I variable from
each type & select addi-
tional most significant
ones

Output
Table 3

Multiply data by
selected Coeff.

Y(i) A(i) , X(i)

SReturn

Flow Chart 2.3 [Subroutine SELECT]
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CSTART

InitializationJ1
L Find initial

estimation of a FC 3.1

+j2

Compute new ýs FC 3.2

3

T +,3F

S...index 6 < maxit

F//

Vi 7

Output ýs

Compute X

Analysis FCS3r3nLS

Returni

FlOW Chadrt 3.0 LSubroutine LSQ]
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Compute
- Mean(1), Mean(2)

XT* Mean(1 )2  + X'r*X- Mean(2)2

5ij NRNCASE 2 2Q

I![Mean(1A) -Mean(2)]

2

Flow Chart 3.1 [Subroutine LSQ]
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2

Index =Index 1 7

ph eTX i / 2:

Pi i=jDij 0 else

G=XT*(D - *p X

Output

f(a3) =XT*,(EVEN1T/NR -P)

O3s 0 + G-'* f(5)

C3/

clow Chart 3.2 [Subroutine LSQ]

35



4

SP(i) I 1 - eeBTXi

1. eEFAIL * Pl(i)

., i=I,...,NCASE

Output
EVENT, SP, T, X

i=1,...,NCASE

Construct frequency table
[X(NC)]I

Output frequency table

I
Construct a more detailed frequency

table with variable increment

Output the second
frequency table

5

Fow Chart 3.3 [Subroutine LSQ]
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?START

XMAX =0

T F
__________ NI 0

J XMAX =max T(i,nj)
XMAX = max T(i ,j) i

.i,j
for fixed nj

Ni,Nj indices of XMAX
NI =index of XMAX

Return

F-low Chdrt 4.0 [Subroutine MAXTI
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START

Initialization,
maxind 0 ; I=i

I> NCASE

Ind -Data (i) +i
XINC

T
Maxind in ind > maxind_

__ __+ F

IG - EVENT(I) + 1
._I=I + - CTR (IND,IG) = CTR (IND,IG) + 1

XINIT
XINC

T
<K NC-1I

< maxind

Maxind k + NC-1
F

utput

ranges and CTR's
a fron K to maxind

Flow Chart 5.0 [Subroutine HISTO]
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CONCLUSIONS FROM SAMPLE RUN

The sample run provided here combines eight cases of myocardial infarct

and 553 systematically selected control cases from two samples stratified by

age. The means of control cases for systolic arid diastolic blood pressure

(SBP and DBP), body mass index (BMI; weight divided by height squared), and

age are presented. On the average, the disease group has higher SBP, higher

DBP, lower BMI, and is younger than the control group, though none of these

are significant.

The time-dependent variables SBP, DBP, and BMI were examined by means of

blocks of time-series transformations. The first block, seeking constant

trend, considers the 3-year average, the individual years, and an average

weighting the more recent years more heavily. The second block seeks a linearK trend and considers pairwise increments between the second and third years,

the first and third years, and the first and second years, plus the difference

between the average of the first 2 years and the last. The final transforma-

tion considers quadratic trend. Age at last checkup is automatically

included, and t-tests are used to find the best separating time-series trans-

formations of SBP, DBP, and BMI. These are most recent SBP, DBP from 2 previ-

ous years, and most recent BMI. Since the option of six time-dependent trans-

formations was selected, the increment between the two most recent SBP and the

quadratic SBP were selected by t-te-ts to be included in the model."L i
Linear discriminant analysis is used to compute the initial estimate of

Ij. Three iterations of the Newton-Raphson procedure are required to find the

maximum likelihood estimates of • to an accuracy of 10-. Inspection of the

final estimate of B and the initial estimate given by discriminant analysis,
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plus the rapid convergence, suggests that discriminant analysis provides a

reasonable initial value for 0.

The matrix GINV is the sample estimate for the Fisher information matrix

M). Using this result we may table the standardized z-score

( Ii- )Jii (B)1/ 2 ) for each Bi component of B.

I BETA (I) VARIANCE Z-SCORE

1 -. 12875809 .1522 - .9267

2 .04446091 .0172 .9520

3 .02388326 .0238 .4347

4 -. 18952202 .1931 -1.2109

5 -. 01121009 .0568 - .0132

6 .01699793 .0146 .3951

We conclude that the disease group is composed of men first of lower

recent BMI, then of higher SBP while being younger, then of higher DBP at the

first examination with a convex quadratic trend, and inconsequentially of

recent decrease in SBP, all of this relative to the control group. Therefore

the data indicates that young slender men with high SBP, and to some extent

with a history of high DBP and a drop, then gain, in SBP are at risk.

The summary table of the estimates for X0 and 6 is based on the ex-

pected number of failures over one year for a sample of 561. Earlier we Indi-

cated th,,•at 0.75 was a reasonable etimate of expected failures for this

sample; however, the various values only change the scale of the probability

of an event and not the relative positions. Therefore any reasonable expected

number of failures may be used. The model is checked by revising the sample

to compute a frequency table for the estimates of an event during the next
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year. We would expect that the estimated probabilities will he hiqher than

averaqe for the disease qroup. Each individual's probability and transformed

data values are printed. The I column provides an index from I to 5619 with

the 553 control cases first, indicated by a 0 in the EVENT column, and the

eiqht disease cases, with a I under EVEN1, last. The probability of an ewvnt

during the year between checkups is computed hy

PLTi_<l I z;(ti)] =1 - exp{-XOe_ -il.

The probability and its frequency class are found in the columns headed S and

INn, respectively. The time after the most recent checkup to failure or cen-

soring is found in the TAU column; if the subject has no event, that is, EVENT

is 0, then TAU is 1.00. Otherwise TAU is .04 + (.08) (number of months

between last checkup and admission to hospital with acute myocardial in-

farction). finally two frequency tables are constructed, one with constant

class size 0.0010 and the other with varyinq class size, to allow a more

detailed examination of the empirical distributions for both qIroups.

lhe sample run does not allow one to conclude that the data used satis-

factorily separate the control and disease samples. Hiowever, some success may

be claimed if the sample reuse procedure can he believed. We normali ed the

rate of events at .15/561 or 1.33/1000 failures on the average over a

year. Suppose we consider the cases with irobability estimates qreater than

.00(14, a convenient class boundary rlose to the avpraqp probability. Then

184/553 - 33.3% of the control group exceeded this critical value while 7/8

S81.5% of the disease qroup exceeded it. It would he of interesC t(i s,

whether or not the control subjects of hi gjhest risk have hben admitted for

41j
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acute myocardial infarction in the past year. However, the individual risk of

heart attack is sufficiently small that the 212 subjects of hiqhest risk would

need to be considered before the chance of an event during this past year

exceeds 0.50.

Our final conclusion is that it is feasible to use a subject's medical

history to estimate his probability of an event. Problems with convergence of

the algorithm are overcome by establishing a qood initial estimate, using an

effective procedure, and limiting the data to a suhsample (if the large control

population. An attempt to establish the full worth of the technique must

await a sample with a reasonably large number of cases.

REFERENCES

1. Box, G. E. P., W. G. Hunter, and J. S. Hunter. Statistics for experi-
menters. New York: John Wiley and Sons, 1978.

2. Breslow, N. C. Analysis of survival data under the proportional hazards
model. Int Stat Rev 43(#1):45-58 (1975).

3. Cox, 0. R. Regression models and life tables (with discussion). Roy

Stat Soc Series B, 34:187-220 (1972).

4. Efron, B. Bootstrap methods. Another look at the jackknife. Arm
Stat 7:1-26 (1979).

5. Frank, J. How does inore information promote correct diaqnnsis?
Presented at the joint statistical meetings of the American
Statistical Association, Biometric Society, and the Institute of
Mathematical Statistics, Washington, D.C., Aug. 179.

6. Kaplan, E. L., and P. Meier. Nonparametric estimation from incomplete
observations. J Amer Stat Assoc 53.457-481. (195R).

Y. Lachenbruch, P. A. DiscrimindnL dndlysis. New York: narrier Press,
1975.

8. Peduzzi, P. N., T. R. Hnlford, and R. J. Hardy. Regression methods in
life table analysis with time-dependent covariates. Prceprint (1978).

9. Prentice, R. L., and J. Dl. Kalbfleisch, Hazard Rate Models with
Covariates. Biometrics 35:25-39 (1979).

10. Press, S, J., and S. Wilson. Choosing between logistic regression and

discrliminant analysis. J Am Stat Assoc 73:699-705 (1978).

42

KL1



11. Shea, G. Statistical diagnosis and tests of factor hypotheses. J Am
Stat Assoc 73:346-350 (1978).

12. Taulhee, J. D. A general model for hazard rate with covariables.
Preprint (1978).

S I4

4


